


 

 

About the Institute for Innovation and Public Purpose  

The UCL Institute for Innovation and Public Purpose (IIPP) aims to develop a new framework for 

creating, nurturing and evaluating public value in order to achieve economic growth that is more 

innovation-led, inclusive and sustainable.  

We intend this framework to inform the debate about the direction of economic growth and the use 

of mission-oriented policies to confront social and technological problems. Our work will feed into 

innovation and industrial policy, financial reform, institutional change, and sustainable development.  

A key pillar of IIPP's research is its understanding of markets as outcomes of the interactions 

between different actors. In this context, public policy should not be seen as simply fixing market 

failures but also as actively shaping and co-creating markets. Re-focusing and designing public 

organisations around mission-led, public purpose aims will help tackle the grand challenges facing 

the 21st century.   

IIPP is housed in The Bartlett, a leading global Faculty of the Built Environment at University College 

London (UCL), with its radical thinking about space, design and sustainability. 
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1.! Introduction  

Large-scale investment into low-carbon assets is now a key condition for successfully mitigating 

climate change (IPCC, 2018; McCollum et al., 2018; Bertram et al., 2021) and dampening 

potentially destabilising feedback on the economy from stranded high-carbon assets (van der 

Ploeg & Rezai, 2020; Battiston, Monasterolo, Riahi & van Ruijven, 2021; Semieniuk, Campiglio, 

Mercure, Volz & Edwards, 2021). However, scaling up the deployment of capital-intensive low-

carbon technologies, such as the supply of renewable energy, has become one of the central 

challenges for accelerating the low-carbon transition, and mobilisation of the right mix of investors 

has proved difficult (IEA, 2020; Polzin, Sanders & Serebriakova, 2021). The literature on financing 

innovation has long drawn attention to the importance of investor heterogeneity for financing 

innovation, though the focus has tended to be on ÔupstreamÕ research and development financing 

(Kerr & Nanda, 2015; B. H. Hall, 2002). We examine whether investor heterogeneity is also 

relevant for the ÔdownstreamÕ commercialisation phase for renewable energy technologies, and 

specifically for the generation of scale economies, a key channel for reducing the cost of 

renewable energy in this phase (Gallagher, Grubler, Kuhl, Nemet & Wilson, 2012). We construct a 
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literature more generally, focuses on the upstream phase of innovation. We study how the quality 

of finance may impact renewable energy innovation a -0.7
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Figure 1: Correlation between capacity and individual investment size (log-log scale); sample of 
investments only with observed total project cost. Data sources discussed below. 

 

 

Figure 1 plots the relation between individual investment size in million USD and project capacity 

size in Megawatt on a log-log scale.3 We observe a positive relation that implies that capacity 

grows in proportion with investment size. This is not immediately obvious: several investors often 

pool individual investments to finance large projects, for example a syndicate of banks or a joint 

venture. A smattering of very small investments into large projects in the left part of the graph 

testify to that possibility. However, 36.9% of the plotted data show investments into deals with 

more 
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This includes savings thanks to the bulk purchase of certain inputs and spreading the fixed cost 

of machines. It also includes the important ÔsoftÕ overhead (or transaction) costs in energy projects 

that are incurred for securing permits and setting up the financing arrangements, where risk 

management tools, and export credit guarantees or other concessionary benefits are costly, but 

vary less than proportionately, if at all, with project size (Neuhoff, 2005). Kavlak, McNerney and 

Trancik (2018) find that for solar modules, since 2001 scale economies in manufacturing have 

outweighed 
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investors with increasing risk aversion may be deterred. The lack of funding for recurring large-

scale investments before the product becomes competitive is often referred to as the Ôvalley of 

deathÕ to highlight the problem of lack of financing (Hartley & Medlock, 2017). Due to the 

proliferation of the term, the lack of financing for the commercialisation phase has also been 

called the second valley of death, to distinguish it from the dearth of funding for bringing lab 

research into product development (Gallagher et al., 2012). Mazzucato (2018) stresses the 

importance of patient public finance to overcome the valley of death since it could last up to 15 

years. Therefore, the question of how heterogeneous sources of finance affect commercialisation 

looms large. 

2.3! Evidence on financing affecting energy commercialisation 

Existing quantitative research on financing innovation has largely focused on R&D phases of 

innovation. Howell (2017) finds that winners of the US Department of EnergyÕs SBIR grants 

double their chance of subsequent venture funding compared with rejected applicants; Goldstein 

et al. (2020
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On the other hand, arguments on how public investment helps scale up investments in innovative 

sectors of the economy have relied on systemic approaches to understanding the innovation 

ecosystem (Mazzucato, 2016). Some of this literature focuses on historical analysis that details 

the role of government institutions in promoting and financing innovation (Freeman, 1995; Perez, 

2002; Mazzucato, 2018). Conceptually, the role of government agencies in such processes is 

justified by the path-dependent character of technological progress. Strong feedback 

mechanisms reinforce the direction of technological change due to the cumulative nature of 

learning (Dosi, 1982). Hence innovations that lie beyond the scope of the current technological 

paradigm require public interventions, given that markets will encourage the development of 

currently cheaper and/or less risky alternatives within the technological paradigm (
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unreported deal values in equal parts to participants (Corrocher & Cappa, 2020; Mazzucato & 

Semieniuk, 2018). We designed an imputation procedure that classifies missing data into groups, 

imputes investment shares using a Dirichlet likelihood, and uses deal and investor characteristics 

to generate variation across investment shares. The details of our missing data classification 

scheme can be found in Appendix A. 

BNEFÕs companion organisation database allows identifying the characteristics of the source of 
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Table 1: Investment size by technology summary statistics 

 Mean SD Min. First qu. Median Third qu. Max. Obs.
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Figure 3: Size distribution of log of investments in million USD by selected technologies and investor 
types. 

 
 

We complement the investment data with a rich set of policy and economic indicators to control 

for the different policy and macroeconomic environments in which investments occurs (see table 

2 
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4.1

! Model extensions 

The advantage of hierarchical models is that they allow for a richer set of relationships to be explored. We discuss two extensions of (1) that allow us to explore the relation between public finance flows and average investment size. First, we consider the introduction of group level predictors in (1
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Second, we consider the possibility of relying on an instrumental variable strategy to correct for 

possible endogeneity problems between our outcome variable and predictors of interest. 

Specifically, this strategy relies on our collected mandate indicator as a source of exogenous 

variation. We can write (1) to include an instrument component to estimate treatment effects the 

following way: 

 

 
 

where Ti
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scale up without much change in upfront investment. Similarly, we find evidence that suggests 

that biofuels have not experienced increases in upfront investment across the sample years. 

Second, offshore wind is the technology that presents the highest growth rate in average 

investment across the sample. The estimated random effect coefficient is 0.07, which implies that 

in conjunction with our fixed effect average investment in offshore wind doubled every 6.3 years 

across the sample length. The other technologies that present higher than average growth rates 

are onshore wind and CSP. However, wide standard errors prevent us from drawing conclusions 

with high certainty about the growth patterns of these technologies. 
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We can further investigate these changes in size by considering variation across technology-year 

clusters. Figure 5 shows how estimated intercept random effects vary across technologies and 

years. These results show that baseline investment values mainly remained stable. However, we 

observe further variation in investment size that the model identifies with shifts in the parameters 

in particular years. Biofuels, CSP, offshore, onshore and solar PV exhibit cyclical variation in 

estimated intercept random effects across the technology-year clusters. The degree of variation 

across the years between the technologies differs, but in most (with the exception being offshore 

wind) we observe a drop in estimated investment size after the 2008 crisis, a small recovery after 

2011, a second fall of investment size (mainly in biofuels and solar PV) and a recovery after 2015. 

Similarly, we can investigate the investment trends of banks and institutional investors by 

analysing technology-year random effect estimates. Figure 6 shows our technology-year random 

effect coefficients for our banks indicator. Random effect coefficient estimates show stable 

patterns to changes in bank investment size. These estimates are negative in the latter years of 

the sample for solar PV and onshore wind. For the former, years 2015 and 2016 show a scenario 
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Figure 6: Technology-year random effect parameter estimates for bank indicator and 95% CI. Plotted 
values display the cumulative effect by adding fixed and random effects. The red horizontal line 
corresponds to the pooled estimate. 
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latter years of the sample there is less differences in investment size across actors for solar PV 

and onshore wind. Offshore wind is another technology that is worth mentioning since we found 

higher rates of exponential growth in investment sizes relative to other technologies. Since we 

observe no shifts in investment differences in offshore wind over time, we can conclude that 
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Figure 8: Predicted average investments by actor type as proportion of project developers. Shaded areas correspond to the 95% CI. 
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The inclusion of interaction ter
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individual investment size of private actors by 0.04%. The interaction between institutional 

investors and aggregate public finance flows remains insignificant. 

 Table 4: Regression coefficient estimates all models. 
 

 Model 1 Model 2 Model 3 Model 4 2SLS 

Intercept 16.73 7.49 10.34 7.83 16.7 

 (0.24) (1.81) (2.55) 
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that there may be value in targeting efforts at mobilising those sources of finance which are more 

effective at generating scale economies and accelerate the commercialisation of technologies. In 

our data, utilities and banks have on average been more effective at that, thanks to their 

propensity to make large investments. While much debate has focused on bringing in institutional 

investors due to their ample supply of funds, our results suggest that this debate might be well 

complemented with a discussion about how utility and bank investments could be incentivised to 

make more investments at the stage of technology commercialisation, due to their apparent 

appr
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mechanism depends on the omitted data points, it is categorised as MNAR. Our imputation 

procedure assumes that the pattern of missing observations depends on the observed data points 

(MAR). 

Given the above and the categories of missing data explained in the previous section, we 

designed an imputation strategy that allows us to utilise the information present in the observed 

sample. We will describe the strategy in two stages. First, we describe how we treated the dataset 

in order to also exploit the information contained in the partially observed data. Second, we 
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the partially observed entries centres around how to create a completely observed data point. 

Both treatments explained for partially observed data entries assume that the non-allocated 

shares can be assigned to any of the investors disclosed in the project (Mazzucato & Semieniuk, 

2018). Following the two treatments we are able to distinguish between entries in our dataset 

that can be used as information to be fed into our estimation procedure, and entries used to 

predict the unobserved shares. 

8.2! Modeling strategy 
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in the vertical dimension. For deals for which we have not enough information about the investors, 

the procedure defaults to Mazzucato and SemieniukÕs imputation. This results in points located 

along the 45-degree line. What our results seem to suggest, is that some portion of the 

participation of investors in multiple deals was overestimated, or underestimated by Mazzucato 

and SemieniukÕs imputation. 

Figure 9: Missing share data imputed under the new procedure vs. Mazzucato and Semieniuk. 
 

 

 

To check the robustness of our new procedure we also attempt to reproduce the observed shares 

in the dataset. Figure 10 plots the average predicted share and the observed shares of investment 

by public and private actors. So far, the procedure performs adequately when predicting 

participation of actors in deals below 50%. However, more information is required in order to be 

able to predict higher shares.10 

  

                                                   

10 This information can only be gained by information from outside the BNEF dataset and can to a small extent be 
supplied where INSPIRATIA has superior participation data. 
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Figure 10: Observed shares of investment plotted against average predicted share. 
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9.! Appendix B  

This appendix elaborates on the technical details of the missing data imputation using a 

hierarchical model with the outcome variable (the shares contributed by each investor) Dirichlet 

distribu
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The precision parameter % can also be modeled as a function of project characteristics. We define 

a function h(xi) that maps project characteristics to a positive real valued number. Defining !  as a 

parameter vector, we can express the precision in a group conditional on project characteristics: 

 

From the above, the target density function and likelihood function are: 

 

9.1! Estimation 

To approximate the likelihood (10) we implement an inference algorithm through R Stan. Two 

variations of Markov chain Monte Carlo algorithms are used by Stan, the Hamiltonian Monte Carlo 

algorithm and its adaptive variant the no-U-turn sampler algorithm (Stan Development Team, 

2019). The full form of the Bayesian multilevel model that we implement is: 

 

In our model  and  are intercept coefficients that distinguish between investors buying 

equity or issuing debt to the project, and whether the investor is a private or public entity 

respectively, and    are slope coefficient associated to project characteristics that vary based on 

the investor type. Finally,   are all hyper-parameters that describe the processes 

that generate the group variation that we are interested in. We assign hyper-priors to fully specify 

the posterior distribution that we are interested in approximating. 

We attempted to fit the model using various permutations of explanatory variables in our dataset. 

We settled on the following considering computation time and how well observed shares were 

able to be reproduced by the model. First, we used the Mazzucato and Semieniuk (2018) risk 

measure as it incorporates country and technology wise information. Presumably, institutional 

considerations and the technical aspects of each project are incorporated into each investorÕs 
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